
MATLAB® Compiler™

Hadoop® Integration Guide

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler™ Hadoop® Integration Guide
© COPYRIGHT 2014–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

October 2014 Online only New for Version 5.2 (Release 2014b)
March 2015 Online only Revised for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online Only Revised for Version 6.3 (Release 2016b)
March 2017 Online only Revised for Version 6.4 (Release R2017a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Deployable Archives
1

Package Deployable Archive to Run Against Hadoop with
Hadoop Compiler App . 1-2

Create Deployable Archive to Run Against Hadoop from
Command Line . 1-6

Standalone Applications
2

Create Standalone Application to Run Against Hadoop from
Command Line . 2-2

Hadoop Configuration
3

Hadoop Configuration . 3-2
When Using Hadoop Standalone Mode 3-2
Hadoop Version Considerations . 3-2

Hadoop Settings File . 3-3

iii

Functions — Alphabetical List
4

Apps
5

iv Contents

1

Deployable Archives

• “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App” on
page 1-2

• “Create Deployable Archive to Run Against Hadoop from Command Line” on page
1-6

1 Deployable Archives

Package Deployable Archive to Run Against Hadoop with Hadoop
Compiler App

This example shows how to create a deployable archive that calculates mean airline
delays. It runs against Hadoop® using the Hadoop Compiler app, which is accessible from
deploytool. The archive that you create contains all the MATLAB® content associated
with the component. The Hadoop Compiler app generates mcc commands that help you
customize to your specification.

This example uses the MaxMapReduceExample.m example file and the airline dataset,
airlinesmall.csv, both available at the toolbox/matlab/demos folder. Move your
example code to a new working folder for deployment. The new working folder on the
path ensures that the files are accessible by MATLAB Compiler™.

Note: Deployable archive that runs against Hadoop using Hadoop Compiler app is
supported only on Linux®.

1 Set environment variables and cluster properties for your Hadoop configuration.
These properties are necessary for submitting jobs to your Hadoop cluster.

a Set up the environment variable, HADOOP_HOME to point at your Hadoop install
folder. Modify the system path to include $HADOOP_HOME/bin.

b Install the MATLAB Runtime in a folder that is accessible by every worker node
in the Hadoop cluster.

The following example uses /hd-shared/MCR/v84.

For information on installing the MATLAB Runtime, “Install and Configure the
MATLAB Runtime”.

c Copy the airlinesmall.csv into Hadoop Distributed File System (HDFS™)
folder /datasets/airlinemod.

d Copy the map function maxArrivalDelayMapper.m from toolbox/matlab/
demos folder to the working folder.

function maxArrivalDelayMapper (data, info, intermKVStore)

partMax = max(data.ArrDelay);

add(intermKVStore,'PartialMaxArrivalDelay',partMax);

1-2

 Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App

For more information, see “Write a Map Function” (MATLAB).
e Copy the reduce function maxArrivalDelayReducer.m from toolbox/

matlab/demos folder to the working folder.

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)

maxVal = -inf;

while hasnext(intermValIter)

 maxVal = max(getnext(intermValIter), maxVal);

end

add(outKVStore,'MaxArrivalDelay',maxVal);

For more information, see “Write a Reduce Function” (MATLAB).
2 Create a datastore object from the MaxMapReduceExample.m and save the

datastore to a .mat file.

ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...

 'SelectedVariableNames','ArrDelay','ReadSize',1000);

save('airlinesmall.mat','ds')

For more information, “Getting Started with Datastore” (MATLAB)
3 Launch the Hadoop Compiler app through the MATLAB command line or through

the apps gallery. At the MATLAB command line type the following command:

hadoopCompiler

1-3

1 Deployable Archives

4 In the Map Function section of the toolstrip, click the plus button to add map
file, which contains the map function. Browse and select one map function
maxArrivalDelayMapper.m.

5 In the Reduce Function section of the toolstrip, click the plus button to add reduce
file, which contains the reduce function. Browse and select one reduce function
maxArrivalDelayReducer.m.

6 In the Input Types section, select tabulartext as input type. By default, the
input type is tabulartext.

7 In the Output Types section, select tabulartext as output type. By default, the
output type is binary.

8 Rename the application name to maxArrivalDelay.
9 In the Data store file field, click Browse and select the airlinesmall.mat file,

which contains the saved datastore object.
10 Click Package to build a deployable archive.

1-4

 Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App

The Hadoop Compiler app creates a log file PackagingLog.txt and two folders
for_redistribution and for_testing. The for_redistribution folder
contains readme file, shell script run_maxarrivaldelay.sh, and deployable
archive maxarrivaldelay.ctf. The for_testing folder contains the same three
files and a log file mccExcludedfiles.log.

11 At the MATLAB command prompt, run the deployable archive against Hadoop
using the generated shell script. The arguments in the command are MCRRoot,
Hadoop properties defined using -D flag, the data file, and the new results folder.
The command to execute the script must be entered as a single line.

cd maxArrivalDelay/for_testing

!./run_maxarrivaldelay.sh /hd-shared/MCR/v84

-D mw.mcrroot = /hd-shared/MCR/v84 /datasets/airlinemod/airlinesmall.csv

myresults

12 Examine the results using the Hadoop command.

!./hadoop fs -cat myresults/*

 'MaxArrivalDelay' [1014]

Other examples of map and reduce functions are available at toolbox/matlab/demos
folder. You can use other examples to prototype similar deployable archives that run
against Hadoop. For more information, see “Build Effective Algorithms with MapReduce”
(MATLAB).

See Also
datastore | deploytool | KeyValueDatastore | TabularTextDatastore

Related Examples
• “Create Deployable Archive to Run Against Hadoop from Command Line” on page

1-6

1-5

1 Deployable Archives

Create Deployable Archive to Run Against Hadoop from
Command Line

This example shows how to create a deployable archive with mcc command that
calculates mean airline delays. The archive that you create contains all the MATLAB
content associated with the component. The mcc command creates a shell script to
run the deployable archive against Hadoop. You can use shell script to customize the
execution of the deployable archive within your particular Hadoop environment.

This example uses the MaxMapReduceExample.m example file and the airline dataset,
airlinesmall.csv, both available at the toolbox/matlab/demos folder. Move your
example code to a new working folder for deployment. The new working folder on the
path ensures that the files are accessible by MATLAB Compiler.

Note: Deployable archive that runs against Hadoop using Hadoop Compiler app is
supported only on Linux.

1 Set environment variables and cluster properties for your Hadoop configuration.
These properties are necessary for submitting jobs to your Hadoop cluster.

a Set up the environment variable, HADOOP_HOME to point at your Hadoop install
folder. Modify the system path to include $HADOOP_HOME/bin.

b Install the MATLAB Runtime in a folder that is accessible by every worker node
in the Hadoop cluster. The following example uses /hd-shared/MCR/v84.

Download the MATLAB Runtime from the website at http://
www.mathworks.com/products/compiler/mcr.

c Copy the airlinesmall.csv into Hadoop Distributed File System (HDFS)
folder /datasets/airlinemod.

d Copy the map function maxArrivalDelayMapper.m from toolbox/matlab/
demos folder to the working folder.

function maxArrivalDelayMapper (data, info, intermKVStore)

partMax = max(data.ArrDelay);

add(intermKVStore,'PartialMaxArrivalDelay',partMax);

For more information, see “Write a Map Function” (MATLAB).
e Copy the reduce function maxArrivalDelayReducer.m from toolbox/

matlab/demos folder to the working folder.

1-6

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

 Create Deployable Archive to Run Against Hadoop from Command Line

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)

maxVal = -inf;

while hasnext(intermValIter)

 maxVal = max(getnext(intermValIter), maxVal);

end

add(outKVStore,'MaxArrivalDelay',maxVal);

For more information, see “Write a Reduce Function” (MATLAB).
2 Create a datastore object from the MaxMapReduceExample.m and save the

datastore to a .mat file.

ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...

 'SelectedVariableNames','ArrDelay','ReadSize',1000);

save('airlinesmall.mat','ds')

For more information, “Getting Started with Datastore” (MATLAB)
3 A Hadoop settings file specifies input type tabulartext, output type binary, the

map function, the reduce function, and previously created datastore.

mw.ds.in.type = tabulartext

mw.ds.in.format = airlinesmall.mat

mw.ds.out.type = binary

mw.mapper = maxArrivalDelayMapper

mw.reducer = maxArrivalDelayReducer

For more information, see “Hadoop Settings File” on page 3-3.
4 Use the mcc command with the -m flag to create a deployable archive. The -m flag

creates a standard executable that can be run from a command line. However, the
mcc command cannot package the results in an installer. The command must be
entered as a single line.

mcc -H -W 'hadoop:airlinesmall,CONFIG:MWHadoopSetting.txt'

 maxArrivalDelayMapper.m maxArrivalDelayReducer.m

 -a airlinesmall.mat

For more information, see mcc.

MATLAB Compiler creates a shell script run_maxarrivaldelay.sh, a deployable
archive airlinesmall.ctf, and a log file mccExcludedfiles.log.

5 Deploy the archive as a Hadoop job by pointing the job to the csv files in the airline
dataset. The arguments in the command are MCRRoot, Hadoop properties defined
using -D flag, the data file, and the new results folder. The command must be
entered as a single line.

1-7

1 Deployable Archives

 !./run_airlinesmall.sh /hd-shared/MCR/v84

 -D mw.mcrroot = /hd-shared/MCR/v84 "/datasets/airline/*.csv"

 myresults

6 Visualize and plot the results.

ds = datastore('hdfs://hadoop01/user/username/myresults/part*',...

 'Type', 'keyvalue')

airlinesmallResult = readall(ds)

 Key Value

 __________________ ________

 'MaxArrivalDelay' [1014]

Other examples of map and reduce functions are available at toolbox/matlab/demos
folder. You can use other examples to prototype similar deployable archives that run
against Hadoop. For more information, see “Build Effective Algorithms with MapReduce”
(MATLAB).

See Also
datastore | deploytool | KeyValueDatastore | mcc | TabularTextDatastore

Related Examples
• “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App”

on page 1-2

1-8

2

Standalone Applications

2 Standalone Applications

Create Standalone Application to Run Against Hadoop from
Command Line

This example shows you how to create a standalone MapReduce application from the
command line and deploy it against a Hadoop cluster.

This example uses the airline dataset, airlinesmall.csv, which contains departure
and arrival information about individual airline flights. The goal of this example is to
compute the maximum arrival delay of an airline in the dataset. The dataset is available
in the matlabroot/toolbox/matlab/demos folder.

Supported Platform: Linux only.

Prerequisites

• Start this example by creating a new work folder that is visible to the MATLAB
search path.

• Before starting MATLAB, at a Terminal window, set the environment variable
HADOOP_PREFIX to point to the Hadoop installation folder. For example:

Shell Command

CSH % setenv HADOOP_PREFIX /usr/lib/hadoop

BASH $ export HADOOP_PREFIX=/usr/lib/hadoop

Note: This example uses /usr/lib/hadoop as directory where Hadoop is installed.
Your Hadoop installation directory maybe different.

If you forget setting the HADOOP_PREFIX environment variable prior to starting
MATLAB, set it up using the MATLAB function setenv at the MATLAB command
prompt as soon as you start MATLAB. For example:

setenv('HADOOP_PREFIX','/usr/lib/hadoop')

• Install the MATLAB Runtime in a folder that is accessible by every worker node in
the Hadoop cluster. This example uses /usr/local/MATLAB/MATLAB_Runtime/v91
as the location of the MATLAB Runtime folder.

If you don’t have the MATLAB Runtime, you can download it from the website at:
http://www.mathworks.com/products/compiler/mcr.

2-2

http://www.mathworks.com/products/compiler/mcr

 Create Standalone Application to Run Against Hadoop from Command Line

• Create the directory /user/<username>/datasets on HDFS and copy the file
airlinesmall.csv to that directory. Here <username> refers to your user name in
HDFS.

$./hadoop fs -copyFromLocal airlinesmall.csv hdfs://hadoopfs:54310/user/<username>/datasets

• Copy the map function maxArrivalDelayMapper.m from matlabroot/toolbox/
matlab/demos folder to the work folder.

maxArrivalDelayMapper.m

function maxArrivalDelayMapper (data, info, intermKVStore)

partMax = max(data.ArrDelay);

add(intermKVStore,'PartialMaxArrivalDelay',partMax);

For more information, see “Write a Map Function” (MATLAB).
• Copy the reduce function maxArrivalDelayReducer.m from matlabroot/

toolbox/matlab/demos folder to the work folder.

maxArrivalDelayReducer.m

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)

maxVal = -inf;

while hasnext(intermValIter)

 maxVal = max(getnext(intermValIter), maxVal);

end

add(outKVStore,'MaxArrivalDelay',maxVal);

For more information, see “Write a Reduce Function” (MATLAB).

Procedure

1 Start MATLAB and verify that the HADOOP_PREFIX environment variable has been
set. At the command prompt, type:

>> getenv('HADOOP_PREFIX')

If ans is empty, review the Prerequisites section above to see how you can set the
HADOOP_PREFIX environment variable.

2 Create a new MATLAB script with the name depMapRedStandAlone.m. You will
add the code listed in the steps listed below to this script file.

3 Create a datastore that points to the airline data in Hadoop Distributed File
System (HDFS) .

2-3

2 Standalone Applications

ds = datastore('hdfs://hadoopglnxa64:54310/user/username/datasets/airlinesmall.csv',...

'TreatAsMissing','NA',...

'SelectedVariableNames',{'UniqueCarrier','ArrDelay'});

For more information, see “Read Remote Data” (MATLAB).
4 Configure the application for deployment against Hadoop with default settings.

config = matlab.mapreduce.DeployHadoopMapReducer;

The class matlab.mapreduce.DeployHadoopMapReducer can be used to
configure a standalone application based on the Hadoop environment where it is
going to be deployed.

For example, if you want to specify the location of the MATLAB Runtime on each of
the worker nodes on the cluster, include a line of code similar to this:

config = matlab.mapreduce.DeployHadoopMapReducer('MCRRoot','/opt/MATLAB/MATLAB_Runtime/v91');

In this scenario, we assume that the MATLAB Runtime is installed in a non-default
location such as /opt/MATLAB/MATLAB_Runtime on the worker nodes.

For information on specifying additional cluster specific properties, see
matlab.mapreduce.DeployHadoopMapReducer.

Note: Specifying a MATLAB Runtime location as part of the class
matlab.mapreduce.DeployHadoopMapReducer will override any MATLAB
Runtime location specified during the execution of the standalone application.

5 Define the execution environment using the mapreducer.

mr = mapreducer(config);

6 Apply the mapreduce function.

result = mapreduce(...

 ds,...

 @maxArrivalDelayMapper,@maxArrivalDelayReducer,...

 mr,...

 'OutputType','Binary', ...

 'OutputFolder','hdfs://hadoopglnxa64:54310/user/username/results/myresults');

Note: An HDFS directory such as .../myresults can be written to only once. If
you plan on running your standalone application multiple times against the Hadoop

2-4

 Create Standalone Application to Run Against Hadoop from Command Line

cluster, make sure you delete the .../myresults directory on HDFS prior to each
execution. Another option is to change the name of the .../myresults directory in
the MATLAB code and recompile the application.

7 Read the result from the resulting datastore.

myAppResult = readall(result)

8 Use the mcc command with the -m flag to create a standalone application.

mcc -m depMapRedStandAlone.m

The -m flag creates a standard executable that can be run from a command line.
However, the mcc command cannot package the results in an installer.

9 Run the standalone application from a Linux shell using the following command:

$./run_depMapRedStandAlone.sh /usr/local/MATLAB/MATLAB_Runtime/v91

/usr/local/MATLAB/MATLAB_Runtime/v91 is an argument indicating the
location of the MATLAB Runtime.

Prior to executing the above command, verify that the HADOOP_PREFIX environment
variable is set in the Terminal by typing:

$ echo $HADOOP_PREFIX

If echo comes up empty, see the Prerequisites section above to see how you can set
the HADOOP_PREFIX environment variable.

Your application will fail to execute if the HADOOP_PREFIX environment variable is
not set.

10 You will see the following output:

myAppResult =

 Key Value

 _________________ ______

 'MaxArrivalDelay' [1014]

Other examples of map and reduce functions are available at toolbox/matlab/demos
folder. You can use other examples to prototype similar standalone applications that run
against Hadoop. For more information, see “Build Effective Algorithms with MapReduce”
(MATLAB).

Complete code for the standalone application depMapRedStandAlone can be found here:

2-5

2 Standalone Applications

depMapRedStandAlone.m

%% Create datastore

ds = datastore(...

 'hdfs://hadoopglnxa64:54310/user/username/datasets/airlinesmall.csv',...

 'TreatAsMissing','NA',...

 'SelectedVariableNames',{'UniqueCarrier','ArrDelay'});

%% Configure application for deployment against Hadoop with default settings

config = matlab.mapreduce.DeployHadoopMapReducer;

%% Define the execution environment

mr = mapreducer(config);

%% Apply the mapreduce function

result = mapreduce(...

 ds,...

 @maxArrivalDelayMapper,@maxArrivalDelayReducer,...

 mr,...

 'OutputType','Binary', ...

 'OutputFolder','hdfs://hadoopglnxa64:54310/user/username/results/myresults');

%% Read the result from the resulting datastore

myAppResult = readall(result)

See Also
matlab.mapreduce.DeployHadoopMapReducer | datastore | KeyValueDatastore |
mcc | TabularTextDatastore

Related Examples
• “Package Standalone Application with Application Compiler App”
• “Pass Parallel Computing Toolbox Profile at Run Time”

2-6

3

Hadoop Configuration

• “Hadoop Configuration” on page 3-2
• “Hadoop Settings File” on page 3-3

3 Hadoop Configuration

Hadoop Configuration

In this section...

“When Using Hadoop Standalone Mode” on page 3-2
“Hadoop Version Considerations” on page 3-2

When Using Hadoop Standalone Mode

To execute a deployed MATLAB application or run a deployable archive as a Hadoop
job in standalone mode, first set the appropriate environment variables in the Hadoop
environment shell:

• Modify HADOOP_CLASSPATH according to your Hadoop version.

• If you are working with Hadoop V1, use mcr_root/toolbox/mlhadoop/jar/
a1.2.1/mwmapreduce.jar

• If you are working with Hadoop V2, use mcr_root/toolbox/mlhadoop/jar/
a2.2.0/mwmapreduce.jar

where, mcr_root is the base of the install area for MATLAB Runtime
• Export LD_LIBRARY_PATH to include the following entries:

• mcr_root/runtime/glnxa64 :mcr_root/bin/glnxa64 mcr_root/sys/os/

glnxa64 :mcr_root/sys/opengl/glnxa64

where, mcr_root is the base of the install area for MATLAB Runtime

Hadoop Version Considerations

• If you are working with Hadoop V1, improve the performance by setting
mapred.job.reuse.jvm.num.tasks to -1.

• If you are working with Hadoop V2, the performance-improvement property is not
supported.

3-2

 Hadoop Settings File

Hadoop Settings File

In creating a deployable archive, you must create a Hadoop settings file that contains
configuration details. If you are using mcc, create a text file. If you are using
deploytool, the Hadoop Compiler app automatically creates the file for you when you
select the map function, the reduce function, the input type, and the output type. You can
view the contents of your settings file in the Configuration file contents section of the
Hadoop Compiler app.

Parameter Type Description Default Value

mw.mapper MATLAB map function name Hadoop identity
map function

mw.reducer MATLAB reduce function name Hadoop identity
reduce function

mw.ds.in.type MATLAB input type

The input type is of two types, tabulartext
and binary. The tabulartext input type is
a formatted text file. The file is either a source
file or result of the previous mapreduce job.
The binary input type is a sequence file.

tabulartext

mw.ds.in.formatThis parameter is valid with tabulartext
input type. This parameter specifies a .mat file
that contains a datastore.

None

mw.ds.in.readsizeThis parameter is valid with binary input
type. This parameter specifies a number that
are number of rows for passing to the map
function.

1

mw.ds.out.type MATLAB output type

The output type is of two types, tabulartext
and binary. The tabulartext output type
writes to a text file. The binary output type
writes to a sequence file.

binary

This example shows a settings file with tabulartext input type:

3-3

3 Hadoop Configuration

mw.mapper = maxArrivalDelayMapper

mw.reducer = maxArrivalDelayReducer

mw.ds.in.type = tabulartext

mw.ds.in.format = airlinesmall.mat

mw.ds.out.type = tabulartext

This example shows a settings file with binary input type:

mw.mapper = maxArrivalDelayMapper

mw.reducer = maxArrivalDelayReducer

mw.ds.in.type = binary

mw.ds.in.readsize = 1

mw.ds.out.type = tabulartext

Related Examples
• “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App”

on page 1-2
• “Create Deployable Archive to Run Against Hadoop from Command Line” on page

1-6

3-4

4

Functions — Alphabetical List

4 Functions — Alphabetical List

deploytool

Compile and package functions for external deployment

Syntax

deploytool

deploytool project_name

deploytool -build project_name

deploytool -package project_name

Description

deploytool opens a list of the compiler apps.

deploytool project_name opens the appropriate compiler app with the project
preloaded.

deploytool -build project_name runs the appropriate compiler app to build the
specified project. The installer is not generated.

deploytool -package project_name runs the appropriate compiler app to build and
package the specified project. The installer is generated.

Examples

Create a New Compiler Project

Open the compiler to create a new project.

deploytool

Package an Application using an Existing Project

Open the compiler to build a new application using an existing project.

4-2

 deploytool

deploytool -package my_magic

Input Arguments

project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved project. The project must be on the current path.

Introduced in R2006b

4-3

4 Functions — Alphabetical List

mcc
Compile MATLAB functions for deployment

Syntax

mcc options mfilename1,...,mfilenameN

mcc -m options mfilename

mcc -e options mfilename

mcc -W 'excel:addin_name,className,version' -T link:lib options

mfilename1,...,mfilenameN

mcc -H -W hadoop:archiveName,CONFIG:configFile

Description

mcc options mfilename1,...,mfilenameN compiles the functions as specified by
the options.

The options used depend on the intended results of the compilation. For information on
compiling:

• C/C++ shared libraries, .NET assemblies, Java® packages, or Python® packages see
mcc for MATLAB Compiler SDK™

• MATLAB Production Server™ deployable archives or Excel® add-ins for MATLAB
Production Server see mcc for MATLAB Compiler SDK

mcc -m options mfilename compiles the function into a standalone application.

This is equivalent to -W main -T link:exe.

mcc -e options mfilename compiles the function into a standalone application that
does not open an MS-DOS® command window.

This syntax is equivalent to -W WinMain -T link:exe.

4-4

 mcc

mcc -W 'excel:addin_name,className,version' -T link:lib options

mfilename1,...,mfilenameN creates a Microsoft® Excel add-in from the specified
files.

• addin_name — Specifies the name of the addin and its namespace, which is a period-
separated list, such as companyname.groupname.component.

• className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the addin_name as the default. If specified, className, needs
to be different from mfilename.

• version — Specifies the version of the add-in specified as major.minor.

• major — Specifies the major version number. If you do not specify a version
number, mcc uses the latest version.

• minor — Specifies the minor version number. If you do not specify a version
number, mcc uses the latest version.

Note: Excel add-ins can only be created in MATLAB running on Windows®.

Note: Remove the single quotes around
'excel:addin_name,className,version' when executing the mcc command
from a DOS prompt.

mcc -H -W hadoop:archiveName,CONFIG:configFile generates a deployable
archive that can be run as a job by Hadoop.

• archiveName — Specifies the name of the generated archive.
• configFile — Specifies the path to the Hadoop settings file. See “Hadoop Settings

File” on page 3-3.

Tip: You can issue the mcc command either at the MATLAB command prompt or the
DOS or UNIX® command line.

4-5

4 Functions — Alphabetical List

Examples

Compile a standalone application

mcc -m magic.m

Compile a standalone Windows application

Compile a standalone application that does not open a command prompt on Windows.

mcc -e magic.m

Compile an Excel add-in

mcc -W 'excel:myAddin,myClass,1.0' -T link:lib magic.m

Input Arguments

mfilename — File to be compiled
filename

File to be compiled specified as a character vector.

mfilename1,...,mfilenameN — Files to be compiled
list of filenames

One, or more, files to be compiled, specified as a comma-separated list of filenames.

options — Options for customizing the output
-a | -b | -B | -C | -d | -f | -g | -G | -I | -K | -m | -M | -N | -o | -p | -R | -S | -T | -u | -
v | -w | -W | -Y

Options for customizing the output, specified as a list of character vectors.

• -a

Add files to the deployable archive using -a path to specify the files to be added.
Multiple -a options are permitted.

4-6

 mcc

If a file name is specified with -a, the compiler looks for these files on the MATLAB
path, so specifying the full path name is optional. These files are not passed to
mbuild, so you can include files such as data files.

If a folder name is specified with the -a option, the entire contents of that folder are
added recursively to the deployable archive. For example

mcc -m hello.m -a ./testdir

specifies that all files in testdir, as well as all files in its subfolders, are added to
the deployable archive. The folder subtree in testdir is preserved in the deployable
archive.

If the filename includes a wildcard pattern, only the files in the folder that match the
pattern are added to the deployable archive and subfolders of the given path are not
processed recursively. For example

mcc -m hello.m -a ./testdir/*

specifies that all files in ./testdir are added to the deployable archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

specifies that all files with the extension .m under ./testdir are added to the
deployable archive and subfolders of ./testdir are not processed recursively.

Note: * is the only supported wildcard.

When you add files to the archive using -a that do not appear on the MATLAB path
at the time of compilation, a path entry is added to the application's run-time path so
that they appear on the path when the deployed code executes.

When you include files, the absolute path for the DLL and header files changes. The
files are placed in the .\exe_mcr\ folder when the archive is expanded. The file is
not placed in the local folder. This folder is created from the deployable archive the
first time the application is executed. The isdeployed function is provided to help
you accommodate this difference in deployed mode.

4-7

4 Functions — Alphabetical List

The -a switch also creates a .auth file for authorization purposes. It ensures that the
executable looks for the DLL- and H-files in the exe_mcr\exe folder.

Caution: If you use the -a flag to include a file that is not on the MATLAB path, the
folder containing the file is added to the MATLAB dependency analysis path. As a
result, other files from that folder might be included in the compiled application.

Note: If you use the -a flag to include custom Java classes, standalone applications
work without any need to change the classpath as long as the Java class is not a
member of a package. The same applies for JAR files. However, if the class being
added is a member of a package, the MATLAB code needs to make an appropriate call
to javaaddpath to update the classpath with the parent folder of the package.

• -b

Generate a Visual Basic® file (.bas) containing the Microsoft Excel Formula Function
interface to the COM object generated by MATLAB Compiler. When imported into the
workbook Visual Basic code, this code allows the MATLAB function to be seen as a
cell formula function.

• -B

Replace the file on the mcc command line with the contents of the specified file. Use

-B filename[:<a1>,<a2>,...,<an>]

The bundle filename should contain only mcc command-line options and
corresponding arguments and/or other file names. The file might contain other -
B options. A bundle can include replacement parameters for compiler options that
accept names and version numbers. See “Using Bundles to Build MATLAB Code”
(MATLAB Compiler SDK).

• -C

Do not embed the deployable archive in binaries.
• -d

Place output in a specified folder. Use

-d outFolder

4-8

 mcc

to direct the generated files to outFolder.
• -f

Override the default options file with the specified options file. Use

-f filename

to specify filename as the options file when calling mbuild. This option lets you use
different ANSI compilers for different invocations of the compiler. This option is a
direct pass-through to mbuild.

• -g, -G

Include debugging symbol information for the C/C++ code generated by MATLAB
Compiler SDK. It also causes mbuild to pass appropriate debugging flags to the
system C/C++ compiler. The debug option lets you backtrace up to the point where
you can identify if the failure occurred in the initialization of MATLAB Runtime,
the function call, or the termination routine. This option does not let you debug your
MATLAB files with a C/C++ debugger.

• -I

Add a new folder path to the list of included folders. Each -I option adds a folder to
the beginning of the list of paths to search. For example,

-I <directory1> -I <directory2>

sets up the search path so that directory1 is searched first for MATLAB files,
followed by directory2. This option is important for standalone compilation where
the MATLAB path is not available.

If used in conjunction with the -N option, the -I option adds the folder to the
compilation path in the same position where it appeared in the MATLAB path rather
than at the head of the path.

• -K

Direct mcc not to delete output files if the compilation ends prematurely, due to error.

The default behavior of mcc is to dispose of any partial output if the command fails to
execute successfully.

• -m

4-9

4 Functions — Alphabetical List

Direct mcc to generate a standalone application.
• -M

Define compile-time options. Use

-M string

to pass string directly to mbuild. This provides a useful mechanism for defining
compile-time options, e.g., -M "-Dmacro=value".

Note: Multiple -M options do not accumulate; only the rightmost -M option is used.

• -N

Passing -N clears the path of all folders except the following core folders (this list is
subject to change over time):

• matlabroot\toolbox\matlab

• matlabroot\toolbox\local

• matlabroot\toolbox\compiler

Passing -N also retains all subfolders in this list that appear on the MATLAB path
at compile time. Including -N on the command line lets you replace folders from
the original path, while retaining the relative ordering of the included folders. All
subfolders of the included folders that appear on the original path are also included.
In addition, the -N option retains all folders that you included on the path that are
not under matlabroot\toolbox.

When using the –N option, use the –I option to force inclusion of a folder, which is
placed at the head of the compilation path. Use the –p option to conditionally include
folders and their subfolders; if they are present in the MATLAB path, they appear in
the compilation path in the same order.

• -o

Specify the name of the final executable (standalone applications only). Use

-o outputfile

4-10

 mcc

to name the final executable output of MATLAB Compiler. A suitable platform-
dependent extension is added to the specified name (e.g., .exe for Windows
standalone applications).

• -p

Use in conjunction with the option -N to add specific folders and subfolders under
matlabroot\toolbox to the compilation MATLAB path. The files are added in the
same order in which they appear in the MATLAB path. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path,
it is assumed to be under the current working folder.

• If a folder is included with -p that is on the original MATLAB path, the folder and
all its subfolders that appear on the original path are added to the compilation
path in the same order.

• If a folder is included with -p that is not on the original MATLAB path, that folder
is ignored. (You can use -I to force its inclusion.)

• -R

Provides MATLAB Runtime options. This option is only relevant when building
standalone applications using MATLAB Compiler. The syntax is as follows:

-R option

Option Description Target

-

logfile,filename

Specify a log file name. MATLAB Compiler

-

nodisplay

Suppress the MATLAB nodisplay run-
time warning.

MATLAB Compiler

-nojvm Do not use the Java Virtual Machine
(JVM).

MATLAB Compiler

-

startmsg

Customizable user message displayed at
initialization time.

MATLAB Compiler

Standalone Applications
-

completemsg

Customizable user message displayed
when initialization is complete.

MATLAB Compiler

4-11

4 Functions — Alphabetical List

Option Description Target

Standalone Applications

Caution: When running on Mac OS X, if you use -nodisplay as one of
the options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

Note: If you specify the -R option for libraries created from MATLAB Compiler SDK,
mcc will still compile without errors and generate the results. But the -R option
doesn't apply to these libraries and won't do anything.

• -S

The standard behavior for the MATLAB Runtime is that every instance of a class gets
its own MATLAB Runtime context. The context includes a global MATLAB workspace
for variables, such as the path and a base workspace for each function in the class. If
multiple instances of a class are created, each instance gets an independent context.
This ensures that changes made to the global, or base, workspace in one instance of
the class does not affect other instances of the same class.

In a singleton MATLAB Runtime, all instances of a class share the context. If
multiple instances of a class are created, they use the context created by the first
instance. This saves startup time and some resources. However, any changes made
to the global workspace or the base workspace by one instance impacts all class
instances. For example, if instance1 creates a global variable A in a singleton
MATLAB Runtime, then instance2 can use variable A.

Singleton MATLAB Runtime is only supported by the following products on these
specific targets:

Target supported by Singleton MATLAB Runtime Create a Singleton MATLAB Runtime by....

Excel add-in Default behavior for target is singleton
MATLAB Runtime. You do not need to perform
other steps.

.NET assembly Default behavior for target is singleton
MATLAB Runtime. You do not need to perform
other steps.

4-12

 mcc

Target supported by Singleton MATLAB Runtime Create a Singleton MATLAB Runtime by....

COM component
Java package

• Using the Library Compiler app, click
Settings and add -S to the Additional
parameters passed to MCC field.

• Using mcc, pass the -S flag.

• -T

Specify the output target phase and type.

Use the syntax -T target to define the output type.

Target Description

compile:exe Generate a C/C++ wrapper file and
compile C/C++ files to an object form
suitable for linking into a standalone
application.

compile:lib Generate a C/C++ wrapper file and
compile C/C++ files to an object form
suitable for linking into a shared library
or DLL.

link:exe Same as compile:exe, and also links
object files into a standalone application.

link:lib Same as compile:lib, and also links
object files into a shared library or DLL.

• -u

Register COM component for the current user only on the development machine. The
argument applies only to the generic COM component and Microsoft Excel add-in
targets.

• -v

Display the compilation steps, including:

• MATLAB Compiler version number
• The source file names as they are processed
• The names of the generated output files as they are created

4-13

4 Functions — Alphabetical List

• The invocation of mbuild

The -v option passes the -v option to mbuild and displays information about
mbuild.

• -w

Display warning messages. Use the syntax

-w option [:<msg>]

to control the display of warnings.

Syntax Description

-w list List all of the possible warning that mcc can
generate.

-w enable Enable complete warnings.
-w disable[:<string>] Disable specific warnings associated with <string>.

See “Warning Messages” for a list of the <string>
values. Omit the optional <string> to apply the
disable action to all warnings.

-w enable[:<string>] Enable specific warnings associated with <string>.
See “Warning Messages” for a list of the <string>
values. Omit the optional <string> to apply the
enable action to all warnings.

-w error[:<string>] Treat specific warnings associated with <string> as
an error. Omit the optional <string> to apply the
error action to all warnings.

-w off[:<string>]

[<filename>]

Turn warnings off for specific error messages
defined by <string>. You can also narrow scope by
specifying warnings be turned off when generated by
specific <filename>s.

-w on[:<string>]

[<filename>]

Turn warnings on for specific error messages
defined by <string>. You can also narrow scope by
specifying warnings be turned on when generated by
specific <filename>s.

You can also turn warnings on or off in your MATLAB code.

4-14

 mcc

For example, to turn warnings off for deployed applications (specified using
isdeployed) in your startup.m, you write:

if isdeployed

 warning off

end

To turn warnings on for deployed applications, you write:

if isdeployed

 warning on

end

• -W

Control the generation of function wrappers. Use the syntax

-W type

to control the generation of function wrappers for a collection of MATLAB files
generated by the compiler. You provide a list of functions and the compiler generates
the wrapper functions and any appropriate global variable definitions.

• -Y Use

 -Y license.lic

to override the default license file with the specified argument.

Note: The -Y flag works only with the command-line mode.

>>!mcc -m foo.m -Y license.lic

See Also

Introduced before R2006a

4-15

4 Functions — Alphabetical List

matlab.mapreduce.DeployHadoopMapReducer class
Package: matlab.mapreduce

Configure a MapReduce application for deployment against Hadoop

Description

A DeployHadoopMapReducer object represents executing MapReduce on a Hadoop
cluster with MATLAB Runtime.

Construction

config = matlab.mapreduce.DeployHadoopMapReducer creates a
matlab.mapreduce.DeployHadoopMapReducer object that specifies the default
properties for Hadoop execution.

Use the resulting object as input to the mapreducer function, to specify the
configuration properties for Hadoop execution. For deploying a standalone application,
pass the matlab.mapreduce.DeployHadoopMapReducer object as input to
mapreduce.

config = matlab.mapreduce.DeployHadoopMapReducer(Name,Value) creates a
matlab.mapreduce.DeployHadoopMapReducer object with properties specified by one
or more name-value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'HadoopInstallFolder' — Path to Hadoop installation
character vector

4-16

 matlab.mapreduce.DeployHadoopMapReducer class

Path to Hadoop installation, specified as the comma-separated pair consisting of the
HadoopInstallFolder and a character vector.

The default value of Hadoop install folder is specified by the environment variables in the
order of precedence of MATLAB_HADOOP_INSTALL, HADOOP_PREFIX, and HADOOP_HOME.

'HadoopConfigurationFile' — Path to Hadoop application configuration files
character vector

Path to Hadoop application configuration files, specified as the comma-separated pair
consisting of the HadoopConfigurationFile and a character vector.

'MCRRoot' — MATLAB Runtime install folder for Hadoop cluster
character vector

MATLAB Runtime install folder for Hadoop cluster, specified as the comma-separated
pair consisting of the MCRRoot and a character vector.

MCRRoot specifies the MATLAB Runtime install folder used by Hadoop when executing
mapreduce tasks in Hadoop.

Example: 'MCRRoot','/hd-shared/hadoop-2.2.0/MCR/v84'

'HadoopProperties' — Job or application specific Hadoop configuration properties
containers.Map

A containers.Map object of name-value pairs that specify Hadoop configuration
properties for a specific job or application. Name-value pairs must be specified as
character vectors.

The properties specified in the containers.Map object are passed as a
[GENERIC_OPTION] consisting of name-value pairs signaled by a -D flag to the hadoop
shell command.

Example:

setenv('HADOOP_PREFIX', '/share/hadoop/a1.2.1') % replace with your Hadoop install location

name = {'mapreduce.map.maxattempts','mapreduce.job.reduces'};

value = {'2','1'};

prop = containers.Map(name,value);

obj = matlab.mapreduce.DeployHadoopMapReducer('HadoopProperties', prop)

4-17

4 Functions — Alphabetical List

Examples

Create a Deploy Hadoop MapReducer object

Create and use a matlab.mapreduce.DeployHadoopMapReducer object to deploy into
a standalone application and deploy against Hadoop.

config = matlab.mapreduce.DeployHadoopMapReducer('MCRRoot',...

 '/hd-shared/hadoop-2.2.0/MCR/v84');

mr = mapreducer(config);

• “Create Standalone Application to Run Against Hadoop from Command Line” on
page 2-2

See Also

See Also
mapreduce | mapreducer

Topics
“Create Standalone Application to Run Against Hadoop from Command Line” on page
2-2

4-18

 hadoopCompiler

hadoopCompiler
Build and package MapReduce applications for deployment against Hadoop

Syntax
hadoopCompiler

hadoopCompiler project_name

Description
hadoopCompiler opens the Hadoop compiler app

hadoopCompiler project_name opens the MATLAB compiler with the project
preloaded.

Examples
Create a New Hadoop Compiler Project

Open the Hadoop compiler app to create a new project.

hadoopCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Specify the name of a previously saved MATLAB Compiler project. The project must be
on the current path.

See Also

See Also
deploytool | mcc

4-19

4 Functions — Alphabetical List

Introduced in R2014b

4-20

 mapreducer

mapreducer
Define deployed execution for mapreduce

Use this function with MATLAB Compiler to specify information about the execution
environment for standalone applications that execute against Hadoop.

Syntax

mapreducer(config)

mr = mapreducer(config)

Description

mapreducer(config) specifies execution environment. When deploying
a standalone application against Hadoop, config is an object of
matlab.mapreduce.DeployHadoopMapReducer class.

mr = mapreducer(config) returns a MapReducer object to specify the execution
environment. You can define MapReducer objects, allowing you to swap execution
environments by passing one as an input argument to mapreduce.

Examples

Create a mapreducer object in deployed mode

mr = mapreducer(...

 matlab.mapreduce.DeployHadoopMapReducer('MCRRoot',...

 '/hd-shared/hadoop-2.2.0/MCR/v84'))

Input Arguments

config — mapreducer object for running in deployed environment
matlab.mapreduce.DeployHadoopMapReducer object

4-21

4 Functions — Alphabetical List

mapreducer object for running in deployed environment, specified as a
matlab.mapreduce.DeployHadoopMapReducer object.

Example: config =
mapreducer(matlab.mapreduce.DeployHadoopMapReducer('MCRRoot','/hd-

shared/hadoop-2.2.0/MCR/v84'))

Output Arguments

mr — Execution environment for mapreduce
mapreducer object

Execution environment for mapreduce, returned as a mapreducer object.

Tips

• mapreducer and mapreducer(0) enables different configurations based on the
products you have. In MATLAB, the mapreduce function automatically runs using a
SerialMapReducer. For more information, see mapreducer.

If you have Parallel Computing Toolbox™, see the function reference page for
mapreducer for additional information.

See Also

See Also

Functions
gcmr | mapreduce

Classes
matlab.mapreduce.DeployHadoopMapReducer

Topics
“Create Standalone Application to Run Against Hadoop from Command Line” on page
2-2

4-22

 mapreducer

Introduced in R2014b

4-23

5

Apps

5 Apps

Hadoop Compiler
Package MATLAB programs for deployment to Hadoop clusters as MapReduce programs

Description
The Hadoop Compiler app packages MATLAB functions into applications for
deployment to Hadoop clusters as MapReduce programs.

Open the Hadoop Compiler App

• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app
icon.

• MATLAB command prompt: Enter hadoopCompiler.

Examples
• “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App”

on page 1-2

Parameters

map function — function for mapper
character vector

Function for the mapper as a character vector.

reduce function — function for reducer
character vector

Function for the reducer as a character vector.

datastore file — input file for MapReduce
character vector

Input file for MapReduce as a character vector.

5-2

 Hadoop Compiler

output types — format of output
keyvalue (default) | tabulartext

Format of MapReduce output as a character vector.

additional configuration file content — additional parameters configuring how
Hadoop runs job
character vector

Additional parameters to configure how Hadoop runs the job as a character vector. See
“Hadoop Settings File” on page 3-3.

files required for your MapReduce job payload to run — files that must be
included with generated artifacts
list of files

Files that must be included with generated artifacts as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the
compiler
character vector

Flags controlling the behavior of the compiler as a character vector.

testing files — folder where files for testing are stored
character vector

Folder where files for testing are stored as a character vector.

packaged files — folder where generated artifacts are stores
character vector

Folder where generated artifacts are stored as a character vector.

Programmatic Use

hadoopCompiler

5-3

5 Apps

See Also

Topics
“Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App” on
page 1-2

Introduced in R2014b

5-4

